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'YS. Phys.: Condens. Matter 7 (1995) 1181-1189. Printed in the UK 

Bosonization of the two coupled spinon-holon chains 

D Schmeltzer 
Department of Physics, City College of the City of NewYork, New York, NY "1, USA 

Received 2 August 1994 

Abstract. The two coupled spinon-holon chains are investigated. One finds that for the set 
of parameters which allows us to map the model into two coupled Hubbard chains tunnelling 
occurs a d  the Luttinger liquid is destroyed. In addition we find that @JL >> ti/3l1 preserves 
the Luttinger liquid. 

1. Introduction 

The physics of strongly correlated electrons is described b y ~ t h e  Hubbard model in the 
t / U  + 0 limit. This limit is  equivalent to the t-J model. In one dimension the t-J model 
is equivalent to a spinon-holon model [l] which is best described within the U(1)  gauge 
formulation [Z]. 

For the Hubbard model it was suggested [l] that, due to the orthogonality catastrophe, 
single-particle tunnelling is prohibited between two Luttinger chains. This result has been 
contested in [3-5]. 

In the present paper we investigate the two coupled holon-spinon chains. We find 
that for the generic case which corresponds to two coupled Hubbard chains single-particle 
and two-particle tunnelling is allowed in agreement with ,[3]. In the language of the 
renormalization group the transverse hopping parameter t l  is a relevant variablc. 

For the particular case of parameters (t:/JA) >> ( t i / J , j )  one finds that Anderson's idea 
of confinement is realized. As a result the Luttinger liquid k n o t  destroyed. 

This situation is realized when the velocity of the antisymmetric charge density modes 
vanishes, U:-) = 0. 

Formally this problem is investigated with the aid of the new bosonization method 
introduced in [Z]. The tunnelling is investigated with the aid ofthe Coulomb gas formalism 
[W. 

2. .The U(1) spinon-holon model 

We consider the two-chain i-J model. 

H = HI1 + HL 

(1b) 

1181 

+ Jli  x [ S ( r ,  x )  . S(r. x + d )  - N(r ,  x ) N ( r ;  x + d) ]  
'2 ' . 
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(IC) 

Hll represents the intrachain 'tl-J~l model and HI represents the interchain ~.L-J.L 
model ( r  = 1.2 is the chain index and d is the lattice constant). For the remaining 
part we use the slave boson representation given in [2]:  C,'(r,x) = b ( r , x ) f + ( r , x ) ,  
Cn(r ,x)  = b + ( r , x ) f A r , x ) ,  b+(r ,x)b(r ,x)+Cn=?,r fa+(r .x) fo(r ,x)  = 1, where b , b +  
are holon bosons and j$, fa+ are spinon fermions. 

Following the method given in 111, we replace the Hamiltonian given in (1) by a U(1) 
gauge spinon-holon model: 

H = H  I1 + HL (24 

- ?Lb+(l, ~)e'"''~'b(Z, X) + HC + $?L[b+(l, x)b(2,  x)I2 . Qc) 

For the remaining part we will study the model given in equations (2a)-(2c). This is a 
U ( 1 )  gauge model with the gauge fields ao, a = ( a ~ ,  all). The model given in equations (2b) 
and (2c) depends on the original parameters. til. Jll, t L ,  JL in the following way: 

1 

- 4t; - 4t: 
VI, = - - 41 V i  = - - JL. 

Jll JL 

The zero-component gauge field Q enforces the charge conservation and all, as the current 
conservation of spinons and holons. 
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3. Bmonization of the model 

In this section we will use the Jordan-Wigner method to bosonize *e model given in 
equations (ZQ)-(~C). We will follow the method introduced in 121. .. 

C(r, x )  = b?r, x)f&, x )  Cf(r, x )  = j:(r, x)b(r, x )  (34 

q. (r, x )  and qo(r, x )  are boson operators. 0, (r, x )  is the one-dimensional Jordan- 
Wigner phase which maps the boson q,(r ,x)  into fermion f r ( r , x ) .  In order to have 
anticommutation relations between spinons in different chains we must add the two- 
dimensional Jordan-Wigner phase x(r, x j  in the discrete .form. 20&, X) is the one- 
dimensional Jordan-Wigner phase which maps bosons into bosons. This phase becomes 
important only when we reachtke metal-insulator transition and will be neglected here. 

The one-dimensional Jordan-Wigner phase 0, (r. x )  obeys the condition 

a,@& x )  = n f , ( r ,  x)fv(r, x )  = n&(r) + n&,(r, x )  (3d 

whenever the averaged density &(r) and the density,operator are defined by &(r) = 
( f , ( r ,x)fXr,x))  = K F / ~ .  J z , A r j 4  = f:(r,x)fu(r,x) - (f:(r3xjfdr3x)). The 
expectation value is taken with respect to  the^ free fermion spinons with mass mf and 
density 1 - 6. 

.. The Jordan-Wigner phase x(r ,  x )  obeys 

x (1, x )  = l,+ dx'~ Imln[x - x' + id] 

x(2, x )  = / dx' ImIn[x - x' - id] 

f:(2, x ' )  j,(Z, x') 

f:(l, x'j f ( 1 ,  x ' ) .  

"=TA 
(3f) 

r'+x n=t..L 

d is the distance between the chains. In the limit d + 0 we obtain a,x(l.x) = 

In the next step we construct the Euclidean action for the Hamiltonian given in 
equation (2). We introduce a many-body coherent state basis 17) = ]so, q t ,  ai) .  Using 
this coherent state basis we obtain the Euclidean action: 

-ZC,=+.~ f:(Z,x)f4,x) and axx(2,x) =?f,f(l,x)f0(l,x). 

,. ? .  i f  . 
, ,.... 

' , ~ '(4Q) 
. . .  

' ~ S = /dr{(rll?rlv) + (slH1~)I. 

The action given in (4a) has the following explicit bosonic form: .- 
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+ i&x(r; x ,  r ) h ( r ;  x ,  r)12 + fGlo:(r; x ,  r)oo(r; x +d, r)l21 

- - o ~ ( l ; r , r ) e x p t i ( B , ( l ; x , r )  - e U ( 2 ; x , r ) + x ( i ; x , r )  

- x ( 2 ; x , r ) + ~ l ( x , r ) ) I o , ( 2 ; x , r )  + H ~ - - L V ~ ( ~ ; X ,  r )  
x exp[iaL(x, s)1o0(2; x ,  r )  + HC+ $ P A I v ~ * ( ~ ;  x ,  r ) a o ~ ;  x ,  r)~' 

- E F ( v $ ( ~ ; ~ ,  r)vOU;:, t )+,o~(2;x,r)oo(2;x,r))  . (46) 

x ,  r )  

(4b) can be further simplified if we use the complex form of the bosonic coherent fields: 

(4c) 
where pa is the density and (o, is a single-valued phase. Using the representation 
given in equation (4c) we replace in the action (4b) the fields vu, q; by the 
charge density JT.& x ,  r )  = q:(r; x ,  t ) q U ( r ;  x ,  r )  - Fe and current JX,#(r;  x ,  r )  = 

Using the representation given in equation (4c) we obtain for the action in equation (4b) 

jL 

U=?.& 
2 

I 
EF is the chemical potential and the sum in (4b) over the c h i d  component 
vanishes. . , 

va(r;  x ,  r )  = &GZTexpCicp.(r; x ,  731 01 = 0, T, 

oz(r; x ,  r)axnu(r; x ,  5 ) .  

the representation 

s = SI[ f SA (5d 

I +[~4i (~, ,o( l ;x , r ) ) '+ t~~(~, ,o(~;  x ,  r))'+4PLJr.o(1; x .  r )J t ,o(2;x ,  r)] . 

(5b) 
In equation (5b) we have replaced the kinetic part by the Hubbard-Stratonovici 

field J+&; x ,  r )  coupled to a phase derivative. In addition we linearize the cubic 
term (7r2/6mr)(p, ( r ;  x ,  r))3 obtained from the one-dimensional Jordan-Wigner phase 
&(r;  x ,  r). The interchain part which gives rise to tunnelling is given by 
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where we have replaced j; and f; by .fl = j ~ p O / 2 ,  il = ? L ~ O  with the property 
pa = & + = 1 - 6, 6. (8  is^ the hole concentration.) The investigation of 
+e tunnelling part S, is performed by expanding the partition function in powers of ?, and 
JL. 

z = S W J T ;  x ,  r)Dpu(r; x ,  r )  

+ x u :  Yr) - x(2;  Y,) + aL(Y,)) . (34 1 
Following Coulomb gas methods we introduce the electric charge density Q,(x,  r )  and 

. ,  
magnetic monopole density S,(x, 7 )  

. .. . .  
where q f )  = f l ,  s f '  = f1,a = 0, T, J-. 

action 3,. 
Using the instanton changes [7] given in equation (5e) we replace equation ( 5 4  by the 

. 

The charge densities Q,(x ,  r )  and & ( x .  r )  are controlled by the 'fugacities' t~ and .?L. 

in equation (Sf) and SII in equation (5b). 
For the remaining part we have to consider the action S ='-SI, +SA, where 3, is given 

4. The dual construction 

We integrate out in equations (5b) and (5f) the phases qc(r; x ,  r )  and the gauge fields ao, 
. ,  

all. U.L. 
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The phase integration in the path integral gives the continuity equations with the 
tunnelling charges Q,(r; x ,  T). 

a, Jr,& X, 7) J- a, J.,&: x , r )  = QAX,  r)[a,.l - 
Integration of the a0 component gives the constraint condition 

J, .o(r ;x , r )+  J , . ? ( r ;x , r )+  Jr ,4 ( r ;x , r )  =O.  

Integration of ail gives 

Jx&; x ,  r )  + Jx,T(r; x ,  r )  + Jx.&(r; x ,  r )  = 0. 

Integration of the a l  gauge field gives the condition for the tunnelling charges: 

Q d x ,  4 + Qr(x ,  t )  + Q i ( x ,  T) = 0. 

Using equations (6b)-(6d) we introduce 

- Q o =  Q c =  QT + Q4 Q s =  Qt - Q4 

and 

- Jd; x ,  7) = J r , k  x ,  5 )  = JZ.&; x ,  T) + J,,L(r; x ,  5 )  

J d r ;  x ,  5 )  = .Jz.T(r; x ,  5) - J, ,&;x ,  5 ) .  

'c' corresponds to charge density and 's' to spin density. 
' 

We introduce a symmetric and antisymmetric mode 

The solution for equations (70) and (7b) can be obtained in terms of new bosonic fields: 
@+), 4(4, 5 s  4(+), "A-'. 
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E is an arbitrary constant. We find that on choosing E = @ the bosonic action takes a 
symmetric form. 

The action S is entirelydetermined by thecharges JZ& x .  7) andcurrents J1& x ,  7): 

and the coupling constants for the charges gL*) and spin gg*) are given by 

with Fi*) given by a 

and fi is the Coulombic potential: 

(104 
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5. The solution to the tunnelling problem 

In this section we will investigate the solution to the action given in equations (9a)-(9c). 
From the computation of the charge density velocity U:-) in equation (loa) we observe 

that in the limit << CL the antisymmetric velocity U:(-) < 0 becomes negative. This 
means that there is no interchain charge density wave excitation. This condition occurs 
when t;/JIl << t:/JL. Due to this w e  will consider explicitly two cases: (a) fll > ?L and 
(b) $11 << QL. 
5.1. The case $1 > CL 
For this case the parameters given in equations (IOa)-(1Oc) are well defined. Therefore 
we can use the action given in equations (gaj(9c). The results obtained for this case are 
similar to the one obtained for two coupled Luttinger chains [9]. Investigating the Coulomb 
gas in equation (9c) one finds that the fugacity ?L is a relevant variable. Therefore one 
obtains a plasma phase with coherent tunnelling for charges between the chain. In the sense 
of the Luttinger liquid one finds that due to tunnelling the Luttinger liquid is destroyed. 
The interchain hopping variable obeys the scaling equation 

01 is the Fermi surface exponent which obeys 01 = $[2/gA-) + gA-)/2 - 21; since g:-) < 2 
it follows that 2u < 1 leading to tl( l)  + w. Therefore the Luttinger liquid is destroyed 
and tunnelling takes place. 

5.2. V,, << VL 
For this case we find that the antisymmetric velocity satisfies U:(-) < 0. (This case will 
occur when t : /JL >> ti/JII.) In order to make use of the derivation presented in section 4 
we will assume that the parameters in equation ( loa)  are such that the coefficient of the 
antisymmetric mode vanishes, U:-) = 0. Therefore the Coulomb gas in equation (9c) 
must be replaced by a gas in one space dimension instead of 1+1 dimensions. Due to this 
dimensional reduction the Coulomb gas for the charge density Q, will be in the confined 
phase. Therefore Qc = 0. We will have only a two-dimensional Coulomb gas for the spin 

Since Qc = 0 it fo'llows that Q, = 2Q+ = -2Qr. In the same way S, = 2S1 = -25'4. 
part! 

For the present case the Coulomb gas is replaced by 

S(Cnu'omb) N / dx / d r  / d x ' /  dr' [ [ $q(x, r)q(x', r') 

1 (-) 

8 
+ L ( X ,  r)s(x', 7 3  i r ( x ,  t ;  x', t') 

where g Q, = k2,  s s S, = f 2 .  The Coulomb gas-in equation (124 is controlled by 
the fugacity JL.  The Coulomb gas in equation (12a) is analysed using the renormalization 
group method used in [6]-[8]. We find the scaling equation 

dJ. dl = [ ($ + $) - 21 JL 
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Since gi-1 = 2 it follows that dJJdl = 0. This means that JL is marginal. As a result 
the present gas (case 5.2) is not in the plasma phase! Due to the fact that dJ l /d l  = 0 
no gap will appear and the only effect of the Coulomb gas given in equation (126) will 
be to renormalize the spinon parameters U$-’ --f U:,;) and gi-1 + g$). We find a 
Luttinger liquid with a symmetric charge density wave and two spin density waves, 
@:+) symmetric and @:-) antisymmetric mode. Those excitations are controlled by the 
effective action: 

6. Conclusion 

The two-coupled-spinon-halon model has been investigated. One finds that for the generic 
case the Luttinger liquid is destroyed. 

For the particular case t : / J l  >> $ / J , ,  one finds that the Luttinger liquid is preserved 
and tunnelling is prohibited in agreement with Anderson’s conjecture. 
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